Surface wettability of plasma SiOx:H nanocoating-induced endothelial cells' migration and the associated FAK-Rho GTPases signalling pathways.

نویسندگان

  • Yang Shen
  • Guixue Wang
  • Xianliang Huang
  • Qin Zhang
  • Jiang Wu
  • Chaojun Tang
  • Qingsong Yu
  • Xiaoheng Liu
چکیده

Vascular endothelial cell (EC) adhesion and migration are essential processes in re-endothelialization of implanted biomaterials. There is no clear relationship and mechanism between EC adhesion and migration behaviour on surfaces with varying wettabilities. As model substrates, plasma SiO(x):H nanocoatings with well-controlled surface wettability (with water contact angles in the range of 98.5 ± 2.3° to 26.3 ± 4.0°) were used in this study to investigate the effects of surface wettability on cell adhesion/migration and associated protein expressions in FAK-Rho GTPases signalling pathways. It was found that EC adhesion/migration showed opposite behaviour on the hydrophilic and hydrophobic surfaces (i.e. hydrophobic surfaces promoted EC migration but were anti-adhesions). The number of adherent ECs showed a maximum on hydrophilic surfaces, while cells adhered to hydrophobic surfaces exhibited a tendency for cell migration. The focal adhesion kinase (FAK) inhibitor targeting the Y-397 site of FAK could significantly inhibit cell adhesion/migration, suggesting that EC adhesion and migration on surfaces with different wettabilities involve (p)FAK and its downstream signalling pathways. Western blot results suggested that the FAK-Rho GTPases signalling pathways were correlative to EC migration on hydrophobic plasma SiO(x):H surfaces, but uncertain to hydrophilic surfaces. This work demonstrated that surface wettability could induce cellular behaviours that were associated with different cellular signalling events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of cell migration by focal adhesion kinase: Time-dependent difference in integrin-induced signaling between endothelial and hepatoblastoma cells

angiogenesis plays an important role in the development and progression of tumors, and it involves a series of signaling pathways contributing to the migration of endothelial cells for vascularization and to the invasion of cancer cells for secondary tumor formation. Among these pathways, the focal adhesion kinase (FAK) signaling cascade has been implicated in a variety of human cancers in conn...

متن کامل

Rho GTPases and leucocyte-induced endothelial remodelling.

Leucocytes in the bloodstream respond rapidly to inflammatory signals by crossing the blood vessel wall and entering the tissues. This process involves adhesion to, and subsequent transmigration across, the endothelium, mediated by a cascade of interactions between adhesion molecules and stimulation of intracellular signalling pathways in both leucocytes and endothelial cells. This leads to cha...

متن کامل

Urokinase-induced migration of human vascular smooth muscle cells requires coupling of the small GTPases RhoA and Rac1 to the Tyk2/PI3-K signalling pathway.

Urokinase-type plasminogen activator (uPA) facilitates cell migration by localizing proteolisys on the cell surface and by inducing intracellular signalling pathways. In human vascular smooth muscle cell (VSMC) uPA stimulates migration via the uPA receptor (uPAR) signalling complex containing the Janus kinase Tyk2 and phosphatidylinositol 3-kinase (PI3-K). We report that active GTP-bound forms ...

متن کامل

Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells.

Rho family GTPases are key signal transducers that regulate cell adhesion and migration and a variety of other cellular responses, including changes in gene expression. In this review, we discuss how Rho GTPases regulate signaling by endothelial cell receptors involved in leukocyte extravasation. First, Rho GTPases affect the expression of some leukocyte adhesion molecules on endothelial cells,...

متن کامل

Role of GTPases in control of microvascular permeability.

Inflammatory mediators increase vascular permeability primarily by formation of intercellular gaps between endothelial cells of post-capillary venules. Under these conditions, endothelial cell-cell contacts such as adherens and tight junctions open to allow paracellular fluid passage. Small guanosine triphosphatases (GTPases) from the ras superfamily, primarily Rho GTPases (RhoA, Rac1, Cdc42) o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 9 67  شماره 

صفحات  -

تاریخ انتشار 2012